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KEYNOTE ADDRESS

TEST QUESTIONS

E.J. McCluskey

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory
Stanford University, Stanford, California 94305

The prograe for FTCS=1 (1971) had 6 paper
sessions and one panel session. The panel session
was on diagnosis and testing. Two of the paper
sessions involved testing: "Test Generation and
Disgnosis® and "Fault~Location and Testing." Thus,
over one third of the first symposium was devoted
to testing issues.

There are 15 paper sessions, two Dpanel
sessions, and one keynote session at this
symposium. Three of the paper sessions - "Design
Testability,” "Teat Generation,” and "Self-Test"
are clearly devoted to testing topics. Another
session, "On-Line Monitoring,™ 18 closely related
and one-half of the papers in the session on "VLSI
Design Issues™ relate to testing. Somewhat less
than 303 of this symposium i3 thus test-related.
The attention given to testing hasn't changed very
much from the first to the current FICS Symposium.

Many conferences devoted entirely to testing
have started since 1971: Cherry Hill Test
Conference and Autotestcon are probably the most
important of these. The conferences on testing
typically cover very practical toples, They are
organized and attended mainly by industry end
govermment people. An  exception 1is the annual
Design for Testability Workshop, sponsored by the
IEEE Test Technology Committee, which has a well
balanced participation from academia as well as
industry and govermment, In addition, testing
papers have become common in wmany other
conferences, most notably the Design Automation
Conference,

Clesrly the FICS activity has not provided a
sufficient vehicle to satiafy all of the current
interest in testing. This is particulerly evident
by the fact that the IEEE Computer Society has
started another Technical Committee - Test
Technology - whose only topic is testing. Also
another Technical Committee, the Computer Elements
Committee, has now started an Annual Workshop on
Testing, For someone like myself who has a major
interest in testing it has become necessary to keep
up with the activities of three technical

committees as well as more than three annual
conferences,

In 1971 the FTCS test papers were concentrated
on the qQuestion of how to generate (minimum-length)
test sets, and seversl of them presented sequentisl
circuit test generation ideas. The emphasis has
shifted significantly as evidenced by the present
conference having sesstions on: *Design for
Testability,” “Self-test,” and "On-Line
Monitoring," with only one a3session on  "Test
Generation.® None of the papers appears to be
specifically on sequential ecircuits although
several address microprocesasor testing.

In the 11 years between the firat and the
current conference, the complexity of digital logic
has grown exponentially. Computer ocircuits have
become ubiquitous in western society. The
increased complexity has led to the reslization
that cost-effective asutomatic test pattern
generation has become impossible for large designs
that do not provide explicit testability-enhaneing
features. As a result, there is a great deal of
interest in developing P"Design for Testability"
techniques.

In spite of much research, sequential circuit
test generation is still extremely expensive,
Adding scan path facilities to a design permits
only combinational ecircuit test generation to be
done., This technique is fast becoming standard in
industrial and govermnment designs. As complexity
continues to increase, it is dbecoming evident that
the cost of generating combinational circuit tests
and applying them with a tester is starting to
become tooc expensive. This has produced a great
interest in the design of “Self-testing®™ circuits.

Although it is not illustrated by the program
of this conference, another srea of current concern
is the question of the fault coverage obtained by
the test technique used., With wmuch denser chips
two phenomena come into play: yield is lower and
the chance of faults that are not adeqguately
modeled as single stuck faults increases, These
produce a requirement for higher fault coverage
than was necessary in the past. The pervasiveness
of digital technology has increased the need for
some form of fault tolerance. In the test area
this has caused increased attention to "On-Line
monitoring” as well as increased test quality.




MODIFIED BERGER CODES FOR DETECTION OF UNIDIRECTIONAL ERRORS

Hao Dong

CENTER FOR RELIABLE COMPUTING, COMPUTER SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science
Stanford University, Stanford, Californis 94305, U.S.A.

ABSTRACT

Modified Berger codes are defined in this
paper. They are less expensive than the ordinary
Berger codes in terms of the number of check bits
and the cost of checkers. As a trade-off, their
error detection ability is slightly lower, although
these codes can detect most unidirectional errors,

INTRODUCTION

It is seen that some physical defects in LSI
or VLSI circuits tend to generate unidirectional
errors. There are several classes of codes, such
as m=out-of-n codes, Berger codes, snd two-rail
codes, that can be used to detect unidirectional
errors, It has also been proved that Low=Cost AN
Codes and Inverse Residue Codes with group length
o+ can detect all unidirectional errors of weight
less than or equal to a [Wakerly 75], [Wakerly 78].

Berger codes have been proved to be the
optimal separable codes that detect any
unidirectional error [Berger 61] (Freiman 62].
However, in [(Freiman 62], the author pointed out
that one could not make a Berger code detect
unidirectional errors of weight less than or equal
to m by simply cutting down the number of the check
bits, where m is an integer less than the number of
information bits in a codeword., In this paper, we
will define Modified Berger codes (MB codes) so
that these codes will detect all the unidirectional
errors of weight less than or equal to m. Then we
will estimate the sctual error detection ability of
these codes. Totally self-checking checkers for MB
codes are also described.

DEFINITION

A codeword of a Berger code has two parts:
information D and check symbol C. Suppose D has I
bits and C has k bits. Let I1 and 10 be the number
of 1's and the number of 0's, respectively, in the
I information bits. The check symbol of a codeword
is the binary number of IO, or the complement (bit
by bit) of the binary number of I1, That 1is

Cx10o0r €=z (2%1)-11.

We have

kt[1°l2(101’]
where [a] i3 the least integer greater than or

equal to a. If Is2%-1 then using I0 or It will
result in the same code, and the code is called the
Maximal Length Berger Code [Ashjsee 77].

Assume now 21l the erroneous bits are within
the I information dits. If we use I0 modulo (met)
or I1 modulo (me1) (1<m<I) as the check syabol,
denoted by Ct, then all the unidirectional errors
of weight lesa than or equal to m will be detected
by this code, becsuse no such error could change
one codeword to another. 1In this case
J-[logz(nwl)] bits are needed for the check symbol

Ct, Let Pk (k=0, 1, ...) be the sudbset of codewords
in which every codeword has an Ilzk., The column Ct
of Table 1 shows an example of such a code.

Table 1. A coding example for Iz=8 and ms7

Subset | Codeword | I0 | C1=I0 | c2
| example | | mod 8 |
PO 1 00000000 | 8 | 000 H 11
P1 { 00000001 |} 7 1 111 H 000
P2 } 00000011 6 1} 110 } 001
P3 | 00000111 |} 5 1 101 H 010
P4 ! 00001111 |} 4 ) 100 H 011
P5 1 00011117 3 i on H 100
P6 1 00111111 2 | 010 H 101
P7 [ RARARRS AN LI 001 H 110
P8 HEER AR R RS R N o | 000 ! 111

A problem arises from the fact that the errors
may also change the check bits, For example, an
error may change a codeword in P1 to a codeword in
PO with only 4 erroneous bits (including the three
check bits). As the number J usually is very
small ([logz(u¢1)]), it is reasonable to use a

second level code to detect any error in the check
bits. We may use any of the codes mentioned in the
beginning of this paper to encode the check symbol
C1 with another check symbol C2. These codes with
check symbol C1 and C2 are called Modified Berger
codes in this paper and the maximum weight of
errors detected by an MB code is denoted by m.
Table 1 shows an example of MB codes with mz7. The
check symbols C1 and C2 in Table 1 form a two-rail
code, In MB codes, because any unidirectional
error in the check bits is detected by the second




coding, either I0 modulo (m+1) or I1 modulo (mel)
can be used directly as the check syambol Ci, It {s
clear that the MB code in Table 1 (with check
syabol C! and C2) can detect any unidirectional
error of weight less than or equal to 7, and that
this error detection ability is effective
regardless of the number of information bits ia the
code,

ERROR COVERAGE

From the definition of MB codes, we see that
MB codes actually detect all unidirectional errors
except those that affect only the information bits
AND have weight equal to multiples of (m+1), In
order to get an idea of the effectiveness of MB
codes, here we give some estimation by two
different error models.

Assume that the check symbol C1 is encoded in
two-rail code by the check symbol C2. In this
section we use the following notations:

m: the maximus weight of unidirectional

errors detected by the MB code.

J: the number of bits in check symbol C1 or

c2, J-[logz(l¢1)]:

I1: the number of 1's in the information
dits;

10: the number of 0's in the information
bits;

I: the number of information bits, IzI1+I10;

n: the length of a codeword, nsl+2J.

The total number of 1's (0's) in a codeword 1is
I1+J (I0eJd).

First, let us consider the independent error
model. Under this model, an error on an éutput
1line is independent of the status of the other
outputs. Suppose the probability that an error
occurs on one output bit is p, and this probability
is uniform for every output bit, and q=1-p, Then
the prodbability that a unidirectional error occurs
is

Prob (any unidirectionsl error)

11+d 10+J

2 (Ilod)plqn-i . 2 (IgoJ)piqn-i
ix1 i=1

I11+d, 10eJ

I0+J, T1eJ

qIOoJ . qu‘J -

+ (1=q )q

an

3 np ( p<<t ),
The probability that an undetected
unidirectional error occurs is
Prob (undetected unidirectional error)

I 2(me1) n=2(me1)
q -

me1 Ne(met) I
w1 q (

’p 2(me1)’P

10
2(me1)

=z (

voe

I0 . mel n-(m+1)

2(me1) ne2(me1)
me1’P q *

+ ( o+ )p

me 1

s 1INy o (0™ pear .

Then the conditionsl probability that a
unidirectional error occurs but is not detected i3

Prob (undetected unidirectional error)
Prod (any unidirectional error)

s 00y o (200 /m3®

This number will change from codeword to
codeword, but essentially 1t should be very small
for reasonable values of p and s value of m which
is greater then 1, Also this probability will
decrease exponentially when a {ncresses. The
reason for this is that the independent error model
implies less prodabdbility for multiple errors.
Although in some cases, such a3 a combinatiocnsl
circuit with fan-out points, the independent error
model does not apply very well, in general, it is
usually true thst an error is less likely to occur
if it involves more bits.

Next we consider another error model. Now we
assume that all the unidirectional errors, no
matter how many bits they affect, have the same
probability to occur. Also assume that all the
codewords have the ssse likelihood to be the
output. The number of error patterns in a codeword
is

—+

1+J I04J

I1ed 10+
( )+ ( )
1§ t 1§ t
2 I o @

The number of codewords for I1 and 10 is
I 1
(11) z (ID)

Let the total number of error patterns be E.
We have

I
Es 1; t™on » %)
20

I
T1ed I
2 2 2 - 1)(3,)
112=o I

The number of undetected errors for each
codeword is

I0
{ymeny?
0<J(me1)<10

( It )+
: J(me1)
0<3(me 1)1

Let the total number of undetected errors be
D. Then

1
ps ¢ cmﬂ,)). > <J(:f,)n<§,>
1120 0<J(me1)<I 0<J{me1)<10
2 3 L)
* Z 2: Jmen)’ {1y

1120 0<J(me1)<I1
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The error coverage of an MB code for all the
unidirectional errors is 1-D/E. Table 2 shows this
coverage for some MB codes in which C1 and C2 form
a two-rail code. It is seen that when the number
of information bits grows, the error coverage tends
to stay around a fixed figure. This is a big
advantage for those applications where the circuits
have a large number of outputs. For a practical
circutit, the error patterns that might occur will
depend on the function and the structure of that
circuit. In general, the error coverage of an MB
code should be somewhere between the two models we
anslyzed. So we can say that MB codes will detect
most of the unidirectional errors that may occur in
8 cirecuit.

Table 2. Coamparison: Error coverage

H MB Codes i Berger Codes
I ! mel 2J Coverage® | k Coverage®
6 ; & 4 93,748 | S 100%
32 1 & 4 93.75% ! 6 100%
48 L] L] 93.75% \ 6 100%
6 | & L 93.75% 1 7 100%
6 | 8 6 99.048 |} 5 100%
32 1 8 6 98,548 | 6 100%
48 | 8 6 98.333 ! 6 100%
64 | 8 6 98.47% | T 100%

® Only for unidirectionsl errors.

CHECKING CIRCUITS

A general design procedure for Totally
Self-Checking (TSC) checkers of Berger codes was
presented in [Marouf T8]. The structure of these
checkers is shown in Fig.1. In the diagram,
circuit N1 is a weight generator which generates
the weight of the information part D, that is, I1.
Then the outputs of N1 sre compared with the check
symbol C by the comparator N2, which is implemented
a3 a two-rail code checker. The weight generator
N1 is a network of full adder (FA) and half adder
(HA) modules. The procedures for constructing
different weight generators are given in [Marouf
78]. This Berger code checker design can be easily
modified for MB code checkers.

I
Information D ~—#-} N1

-

Error Signal

k
Check Symbol € —de—m—c——ae—a

N2

Figure 1, Structure of Berger code checkers

A TSC checker for an MB code consists of two
parts as shown in Fig.2. Circuit CH!1 checks the
information bits dby generating the complement of
the check symbol C1 (by circuit N1') and comparing
it with C1 (by circuit N2'), Assume that check
symbol C1 is defined as

€1 = (2°21)=(11 modulo met ),

In other words, C! is the complement (bit by bit)
of I1 modulo (me?). In this case, circuit N1’
generates the weight of information part D modulo
(me1), We call such a eircuit N1’ s modulo weight
generator while the ordinary weight generators are
refered to as full weight generators, Circuft N2'
in Fig.2 is a two-rail code checker. The J outputs
of circuit N1',6 denoted by C1', will then bde
compared with the check symbol C1 of the codeword
by the checker N2', Because MNB codes provide the
full code space for the two-rail code checker N2',
the checking circuit CH1 described above is a TSC
hecker. The d level coding of C1 and C2 is
checked dy circuit CH2. C1 and C2 masy form either
& two-rail code or another Berger code. If C1 and
C2 form a two-rail code, then CH2 i{s the same as
N2'. When no error occurs, C! and C2 are a
codeword, 80 are C1 and C1', We have C1'2C2, and
faf', gzg’.

: CH1 ;
H i :
Iz L | :
D “ | N1 | ‘ H
HE ! HA A I
L S | e | jo——e
J e | N2* | e
C1 =& * H | e g
: H | HEH]
H | :
H H H
Sevesoscsevssatonastacronneel
H
i
: H )
e | | e £
< } CH2 |
C2 ~+ H | o——— g'
H H

Figure 2. Structure of MB code checkers

Conceptually m+1 may be any integer, but in

the case that no1:2J the circuit implementation

of the checker will be the simplest. In fact, a
modulo weight generator can be obtained directly
from the corresponding Berger code checker, This
is done by keeping only the lowest J bits in each
stage of weight representation and removing all the
higher bits in the full weight generator., Fig.3
shows how a full weight generator with 15
information bits can be modified to realize a
modulo weight generator with met1s4 (modulo &), In
F1g.3, numbers for the full weight generator are
noted in () if these numbers are different from
those of the modulo weight generator. The asterisk
(*) in an adder module indicates that for the
modulo weight generator the adder does not have the
highest carry output. So, for MB code checkers,
the Jth bit of these adder modules is simply a
three-input XOR gate instead of a full adder., It
i3 also seen from Fig.3 that the modulo weight
generator has less delay time than the full weight
generator since its last adder module is one bdit
shorter,
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Table 3 compares the hardware cost of check
symbol generators of MB codes (me12l) with Berger
codes and low-cost residue codes (group lengthzi).
TSC checkers for low-cost reaidue codes are
described in [Ashjaee T7] and [Avizienis 71]. The
hardware savings in Table 3 are estimated in terms
of the number of devices for PLA implementstions
and are compared with Berger codes.

Table 3. Comparison: Hardware cost
for check symbol generators

Info | Berger | LC | MB codes
bits | codes | codes|
I | FA HA | FA | FA HA XOR® Savings
15 ¢ 1 o - 7T 0 3 22.7%
6 | 11 & | 12} T 2 3 25.6%
31} 26 o0 { - | 1S o0 7 28.88
32 | 26 S | 28 | 15 2 T 30.7%
63 | 57 0 I - | 31 0 15 32.5%
64 1 ST 6 | 60 ! 31 2 15 33.6%

® Three-input XOR gate.

CONCLUSION

Modified Berger Codes are defined in this
paper. MB codes can detect all unidirectional
errors of weight not equal to multiples of a
predefined integer me!. This error coverage is
greater than low-cost residue codes but less than
Berger codes. MB codes have fewer check bits than

the corresponding low-cost codes or Berger codes in
most cases. Also MB codea can be easily applied to
any number of information bits. Because the number
of check bits of an MB code is independent of the
total number of the information bits, they are
suitable for circuits that have a large number of
outputs, such as PLA's. It i3 also shown in the
paper that the totally self-checking checkers for
MB codes are less expensive and have less time
delay than that for either Berger codes or low-cost
residue codes. All these advantages make MB codes
very attractive for practical applications.
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A STATISTICAL LOAD DEPENDENCY MODEL FOR CPU ERRORS AT SLAC

Ravishanker K. lyer and David J. Rossetti

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University

Stanford,

ARSTRACT
This paper describes an asnalysis of CPU errors at
the Stanford Linear Accelerator Center Computa-
tional facility. The atudy includes all classes of
temparary and permanent CPU errors. Nearly 835 per-
cent of the errors are temporary failures. HWe find
a strong load dependency in the errors. The
obsersed tendency is present in three years of load
data. This observation is significant because a
_Toad~failure relationship found st the CPU level
must, in our view, be considered fundamental, In
addition, the fact that most of the errors are
transients or intermittents, provides new informa-
tion on these error types with respect to their
losd dependent behavier. Cur snalysis procedure,
used on the SLAC data, has been validated on an
artificially created data base seeded uith faif-
ures.

Kevyords: Statistical failure models, workload,
data analysis.

INTROQUCTION

1t i3 uell knoun that as a system approaches high
levels of utilization, degradation in performance
oceurs [Ferrari 78]). An  important question s
whether increased system activity also results in
the degradation of system reliability. 1f this is
true, the implications are quite fundamental, since
increased usage would result in an’ {ncreased risk
of error. Computing systems, which need maximum
reliadility at the time of their peak load, would
require a reevaluation of their reliability projec-
tior.s. Research on the resolution of this question
hasg been in progress at the Center for Reliable
Computing at Stanford University since 1978. A
lack of understanding of the complex physical
interactions involved preclude analytical modeling
at this stage. Accordingly, our approach has been
to assume no model a priori, but rather start from
8 substantial body of empirical dats on system load

and fatlures. The object of the project is tuo-
fold:

1. To design and implement statistical experiments
in an attempt to study the dependence of fail-
ure on load.

2. To develop models for determining any cause-ef-
fect relationships betueen workload and fail-
ures.

CA 94305 U.S.A.

The techinques developed will form an important
basis upon which analytical models and simulation
techniques can subsequently be developed.

1t is the purpose of this paper to report the
results of our most recent investigations. These
investigations were conducted on the I[B8M computer
system at the Stanford Linear Accelerator Center
(SLAC) computationa) facility. An overview of the
SLAC system configuration appears in [Butner 80].
Using new techniques to measure both the workload
and harduare errors in & large computer center for
a period of three years, the follouing uere com-
pleted:

{. The present study concentrates on CPU errors.
A large majority of thess can be classified as
transient or intermittent.

2. We have nou establighed a compietely neu data
base of failures and load uhich is considerably
superior to our old data base (UNILOG), [Butner
80) in depth, range and integrity. 1In perticu-
lar, §t captures a detailed internal view of
the system and unlike UNILOG is automatically
collected dats.

3. More significantly, the workload and failure
data were combined in order to match failures
with workiocads at the times of failure.

4. The measurements and statistical experiments
clearly demonstrate an increased risk of CPU
errors due to increased values of workload
variables. Examples are CPU utilization,
input/output rate, and interrupt rates.

A representative measurement is illustrated in
Fig. 1, uhich shous how an increase in the inputs
output rate can result in higher risk of processor
errors, The horizontal axis is the workioad vari-
able; the vertical axis is the risk of error. Mod-
eling details will be given later in this paper.

Relsted Research

The failure data for initial studies, [Besudry 78],
[Butner 80) and (lyer 81), came from the operstor
maintained data base called UNILOG. A statistical
analysis of UNILOG failure data was performed in
conjunction Wwith a number of performance measures




from the 1B8M SMF' data log. 1In particular, we ana-
1yzed harduare and softuare failures. classified by
companent types. The study revealed a strong cor-
relation betueen load and failures, although soft-
ware failures correlated at a somewhat wsaker level
than harduare. Most importantly, the average over-
sll system failure rate varied cyclicly over s band
of significant width as determined by the daily
Yoad variations.
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Figure 1: Risk of error incresses with
increasing 1/0 rate.

Additiona) substantiation of this result came
from results reported in [Castilla 80], uhere @
constant failure rate model is proposed. [n exper-
imenting mith data from s DEC system, [Castillo 80)
found a Poisson model to be valid only at specitic
hourn of the day, for particular load levels. Sub-
sequently, the same suthors [Castillo 381] proposed
the use of a doubly-stochastic Poisson process to
mode!l the cyclic load-fsilure relationship, The
mode! assumes that the instantaneous failure rate
can be described by a cyclostationary Gaussian pro-
cess. In {[Gunther 30)] a novel theoretica) mode)
for an apparent dependency of failure on load,
based on a random walk formulation, is described.

The next section motivates the current work and
places our pirevious results in perspective. "Meas-
urements® discusses the failure and workload meas-
urements taken and briefly presents the organiza-
tion of the data. Subsequent sections describe the
analysis procedures and present nem results.
Finally, we summarize the important results and
highlight the conclusions that can be drawn from
then.

TIVAT

A user-oriented real time system is frequently

———————— et

! The 18M System Management Facilities, for col-
lecting accounting and performance data. See
[18M 73] for details.

expected to respond to conditions which differ from
those for which it was modeled and evaluated. As
indicated earlier, our approach has been to start
with a substantial body of real data and examine it
for 8 rea)l or spparent dependency. In vieuw of our
previous results, ue beiieve that the error process
which ensues is composed of two separate effects.
The first is the (constant) inherent failure rate.
This is determined through classical reliability
techniques [Shooman 63), taking into consideration
such factors as topology, redundancy stc. The sec-
ond ig the utilization-induced failure rate. This
rate is dependent upon both the absolute level of
aystem utilization and the rate of change of that
level, By an absolute level ue mean an obviously
measuradble level; eo.g9., CPU vtilization, wmemory
occupancy, etc. Through the rate of change of uti-
tization uwe are attempting to measure the rate at
which transitions ogcur betueen various system
states, e.g9. the transitions of the CPU into and
out of ¢the busy state. Although the exact naturs
of these effects is not known, some underlying
causes are thought to be as follous:

(i) Latent Discovery Effect: Many failures can
only be detected wuwhen a particular module or sub-
system is "exercised.™ [n other words the systes
can be modeled as a load flox graph wherein we have
increased path utilization when the load increases.
Thus, although the #silures may not be caused by
increased utilization they are “revealed® by this
factor. The time betueen the occurrence of failure
and manifestation as a system error has been refer-
red to as “error latency™ (Shedietsky 73].

{3i) JIncreased Fatigue: The~e appesrs to exist »
correlation betueen utilization and reliability.
The more often ue exercise information sccess chan-
nels and associated memory locations the greater
the temperature and increase in fatigue.

(ii1) Noise: A higher utilization tevel results in
increased electronic noise. This can be expected
to result in a higher error probability.

(iv) Synchronization and Iiming Angmalieg: The
synchronization or timing snomaly category includes
the failures due to time dependent aspects of the
softuare and harduare. An error in the access to
critical regions or en unanticipated sequence of
states in an  inter-computer communication protocol
are some examples. Dependence upon level of utili-
2ation is obvious — ss a system approaches fu))
capacity, the "relative™ timings of events can
fluctuate uidely. Sequences of events betueen pro-
cessors can change from those originally antici-
pated as one or more of the CPUs nears saturation.
A frequent source of timing anomaly is caused by
implicit assumptions (often totally unintentions))
regarding absolute times betueen events. 1In s real
system pushed near 100 percent utilization, timings
sre highly dilated betueen system components and
absolute synchronization assumptions can be vio-
lated.

Our previous studies did provide us wuith some
insight into the above effects. ue uere, for exam-




ple, oble to see that though the latent discovery
was an important factor, other effects uere indeed
present. The strong correlations in the pre-noon
period (the *8 o’clock phenomenon™) (outner 80],
shows that latent discovery is an important factor.
The continued strong correlation in the afternocon
suggesta that other effects are also present.

We uere, however, limited by the fact that the
failure data was an external, human-coilected vieu
of the system. |In order to obtain a closer insight
into the problem, it uas considered necessary to
study the internal! error generation process and
determine its relationship, {f any, with system
activity. In particular, we decided to concentrate
on CPU errors. Ah important reason for this was
the fact that 1little is knoun regarding the behav~
ior of the CPU errors and their relationship to
load. In addition, & substantial number (85 per-
cent) of the CPU errors, in the period of our
study, uere found to be “soft™ errors., 1i.e. those
from which the system recovered. Accordingly, they
come in the general category of transient or inter-
mittent errors (defined belonw), or design errors.
Again, relatively little is known regarding the
generation of these soft errors.

He define an intermittent error as one due to s
component on the verge of faiture. The error uil)
re-occur frequantly and eventually become perma-
nent. 1t is generally believed that temporary
failures are four to five times as frequent as per-
manent failures [Bal) 69). Nearly 90 percent of
field errors are beiieved attributable to this
class. Although & tew analytical models exist.
they are extremely restrictive and the basic
assumptions need validatior {Savir 77]. Statisti-
cal studies on real data are few and far betueen
{tcConnell 79). The following section gives a gen-
eral overview of the measurement techniques and
construction of the data base.

HMEASUREMENTS
Error Measyrement

As stated earlier, the present study uses the most
detailed data from the lcg maintained by the oper-
ating system as errors are detected by the harduare
and recorded by the softuare.. Kigh level system
behavior, 2s seen by the computer operator and
users, is not directly measured. 1Instead, there is
much information on hardusre errors, both permanent
and non-permanent (transient and intermittent), as
they occur in the detailed operation of system com-
ponents.
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The SLAL system, during the period of our study,
congsisted of tuo 1BM 370/168 mainframes and an 18N
36079t connected in a triplex mode. The dats for
our study, uhich consisted of three yesrs of seas-
urements (1979, 1380, end 1981), ocame from the tuo
18M 3707168 mainframes. The log referred to above
is commonly called the “EREP" 1log, from the Envi-
ronmental Recording Editing and Printing progrem
used to accumulate and format it for maintenance
(18 79). Note that it is significantly more com-
prehensive than UNILOG which is essentially an
external, human-collected log.

Errors in IBM 370 aystems are clessified into
three major types:

1. LPU frrors - In the central processor and stor-
age.

2. fhannel Errors - 1In /0 channels and associated
interfaces.

3. Quthosrd frrorg - In any device beyond the
channel-control unit interface, i.e. all
errors in 1/0 devices.

for esch error, whether recoverable or not, the
operuting system ;reates a <time-stamped record
describing the error and providing relevant infor-
mation on the state of the machine. As an example,
for a CPU error, the state information might
include the contents of sall internal registers and
diagnostic infaormation collected by the harduare
(such as parity indicators and error flags).

At SLAC this i(nformation is collected on a daily
basis and archived for many years. A saal) sample
is presented in Table f.

Horkload Measurement

Since errors in processors occur fairly infre~
quently (on the order of once a day {or our meas-
urements), correlation with workload requires long
term workload figures. our workload data comes
from tuo sources: the built-in system utilization
facility, and a softuare monitor written specifi-
cally for this study. They are discussed below.

SME Data. The operating systems in the proces-
sors measured use IBM’s System Management Facili-
ties (SMF) for usage accounting. SMF uss origi-
nally designed to provide accounting information,
but it has evolved over the years to include more
general performance measurement information. SHF
is discussed exhaustively elseshere [IBNM 73],
[Butner 80) and will not be detailed here.

error data (EREP)
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In general, SHF data consists of records giving
resource ytilization figures for jobs, files, /0
devices, and a potpourri of statistics gathered and
written on a periodic basis. For this work we use
the typs 4 (Step) record, which holds statistics
for each job step as it completes execution, and
the type 1 (Mait) record, written roughly every 10
minutes, uhich summarizes global system utilization
during that 10 asinute period. Nith careful pro-
cessing SMF can provide excellent workload statis-
tics, especially when high resolution results are
not needed.

INTRACK Monitor. To obtain more detailed infor-
mation about trangsient behavior in the CPU wue
imptemented an interrupt rate wonitor, called
INTRACK. This softuare monitor consists of two
components: the interrupt counters and the INTRACK
recorder. There are four claises of interrupts in
the 1817 370 architecture:3

t. External (EXT) — Used by the operating system
for clocks and inter-CPU communication.

2. Supervisor Call (SVC) = Caused by any SVC

instruction. Used for operating system servi-

ces, such as: memory allocation, synchroniza-~

tion, 1/0, timing, ete.

3. Program (PROG) — Program traps due to arith-
metic conditions (e.g. division by zero),
invalid operations, or page faults.

4. Ilnput/Output (1/,0)
operstions.

—— From completion of 1/0

The operating system provides an interrupt han-
dier for each class of interrupt. A counter field
and instruction to increment the counter uere added
at the beginning of each interrupt handler. These
counters start at zero when the system is loaded
and increase monotonically until the system crashes
or is reloaded. The counters have the capacity to
count up to 10'%, so overflow is not a problea.

The INTRACK recorder is a continucusly running
program that is automatically started every time
the operating system is loaded. Table 2 summarizes
the sources of data for our workioad information.
fFigure 2 is an example of interrupt rates derived
from the INTRACK counters.

The Dats Base

Before the load oand e-ror data could be analyzed,
it was necessary to create & coherent data-base
which could be used as input in any subsequent
analysis. This was particularly important for the
workload dats since the records came in varying
formats and types. As a first step ue created
S-minute time averages for all uorkioad parameters
for the entire period of our study.

e O —

t Machine check interrupts are not considered here
because they are slready collected in the EREP
data.

ALt 2

Input date for werilesd veriabliss.

Aeoerd Mhen gensrated Contents vsed
Step At end of sash botah Sob  Assounting snd jeb usepe
step dats, o.5. CPU S1me. MNe. of
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Figure 2: One day of INTRACK-collected interrupt
rates.

In order to determine the 1load at the time of
failure, the S-minute load averages (uhich we refer
to as sreared avereges) uere merged mith the EREP
log. The load at fsilure uas taken to be the load
in & five minute interval prior to the failure to
eliminate perturbations from system error recovery
or a system crash. The matching is shoun in figure
3.

Load Prior to fuiluro-\\

/Flihﬂ"
_pooonsonnnans, B
Time: t t+5 ¢+10
(minutes) e

cr::::fge Load in t,t+S

Figure 3: Merging of Load and Failure DBata
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As & second step, ve also created an hourly smeared
dats base. The creation of these data bases neces-
sitated complex processing in order to minimize the
loss of information which inveriably accompanies
such procedures. The softuare system developed for
this purpose is described in [Rossetti 81). The
system, which is highly intersctive, allous effi~
cient handling of large amounts of data (on the
order of 4 x 10" bytes) of varying formats and com~
plexities.

ANALYSIS
Initial pats Analvais

As sn example of & simple snalysis, let us summa~
rize the types of machine checks that occur in the
error dats. We will count al! unique patterns
found in the machine check status bits provided by
the hardusre. The SAS? program used to generate
Table 3 is less than fifteen 1lines long and uas
very simple to write. Each rou in this table rep~
resents a unique pattern which may include one or
more indicators that make up the error type. Posi-
tions containing "-~" mean that the corresponding
indicator was pot in the pattern; abbreviations
(such as SOMG. IDMG, ete.) are used as mnemanics
for indicators that were 3gt in the pattern. For
example, the second row indicates that of the 456
errors occurring in the three years, 100 uere hard-
ware~recovered storage errors. The figures at the
bottom of each column shou the number and percent
of errors for which the corresponding indicator uas
set.

TABLE 3
Sreakdoun of CPU Error Types

SYS _INST SYS EXT DE- STOR-
pne  oug  RCYY QHG  GRADE AGE  fREQ  RCI

e~ == == EDMB == -- 169  37.0
—- == REVY == = SWG 100 21.9
-~ I0MG == ==  ~= STRG 99  21.7
= == REYY == ee e 46 10.0
== == == (MG =-- SIG 21 4.6
SOME == e e ee e 1" 2.4
== =~ RCVY == DEGR == 6 1.3
a= == RCVY EDMG -- STRG 1 0.2
“ IDME e  -e == - 1 0.2
= 10ME  ~- EOMG e~ == t 0.2
- 10MG ~- EDMG == STRG T 0.2

Total Errors: 456 100.0
Jotals for each indicator considered separately

1" 102 153 193 6
2% 2% 34% 42 12

222 Frequency
492 Pect. of Al
Errors

3 The Statistical Analysis System is a pouerful
system for managing and analyzing data [SAS 79).
It was used for most of the data analysis.

A careful exsmination reveals msuch {nforaation
about the types of processor errors and their relg-
tive severity. For example, external damage (EDMG)
occurred in a large number of patterns (422), and
the table indicates that 1in almost all of those
cases no other damage uss detected 1in the CPU.
External damage is an error occurring in sn sres of
the system not directly connected with processing
the current instruction. Another frequent category
is system recovery (RCVY), at 34X, mostiy in con-
Junction with some type of storsge error (STRG).
Apparently the system was able to recover by using
error correcting codes or by retrying the instruc-
tion in progress. Hotice that storage errors werse
involved in almost halt the errors (222 or 49%)
with sbout half of those (101 or 22X) being immedi-
ately corrected by the harduare. In fact, other
tabulations shou that the remaining storage errors
were dealt uith by operating system termination (54
or 12X), and task terminstion (76 or 17%). System
damage (SDMG), which causes the operating system to
stop immediately after recording the failure,
occurred 2X of the time. The above shows that an
sssortment of fault recovery techniques are being
uvsed and contribute markedly to overal] system per-
formance. In fact, we find that in only 14X of the
errors does the operating system stop processing.

Horkioad and Error Analvsis

The data consisted of three years of load/failure
measurements, 1979, 1980 and 1981, The 1981 data
containg additional wmeasurements made by our spe~
cial purpose interrupt meonitor. Initially, we ana-
lyzed each year separately. Since there wuas no
significant difference in the 1979 and 1980
results, it was considered appropriate to combine
the corresponding load-tailure data. 0f the thir-
teen worklasd measures collected for the study,
four were chosen to be studied for 1979 and 1980.
They uere:

1. COREU — The sum of memory allocated by batch
jobs (K bytes).

2. EXCP* ~ The 1/0 initiatation rate by batch
jobs (1/0s per second).

3. SYSCPU — CPU utflization for system. i.e.
non-batch, tasks (a fraction betuesn 0 and 1).

4. TOTCPU ~— Total CPVU usage (a fraction betueen 0
and 1).

For 198! the following interrupt messurements were
also included:

t. SVC — Supervisor calls (rate per second).

2. 10 — 1/0 interrupts, completion of 1/0 opera-
tions (rate per second).

3. PROG — Program interrupts (rate per second).

The probability distribution 2(x) of s workload
variable is defined by

——————————————

% An scronym for “"CXecute Channe! Program™




2(x) = Pr {workiocad = x)¥

and uill be called the probability distribution of
load. Mhen failures are collected and matched to
workload, the joint probability distribution of
failure and load results. and is defined by

f(x) = Pr {failure occurs and load = x).

In this expression, failures and load values are
represented as they occur on an sctual system,
where favored loasds contribute more to the distri~
bution than 1loads of low probability. To remove
this effect ue divide f(x) by the associated load
probability £(x). Using the wel) knoun notion of a
conditional probability distribution (Feller 68) ue
urite
f(x)
9(x) = Pr {failure ocours | load = x} & ———
Ax)

Therefore g{x) can be thought of as the probability
of a failure at a given load when al] loads are

represented: It is the conditional failure
probability.

A commonplace analogy to illustrate the above
distinction is that automobiles travelling at 150
aph have a higher probability of accident than
those travelling at 55 mph. Houever, there are far
more accidents for asutos going §S. To obtain an
accurate representation of the risks involved in
travelling at high speed, ue must divide the number
of accidents occurring st each speed by the number
of autos travelling at that speed. Figures 4 and §
depict the £, ¢, and g distributions of System CPU
(SYSCPU) and Batch I/0 Requests (EXCP) for 1979,
1980, and 1931,

SYSCPU (Cond.)

SYSCPU (Load)

IHE LOAD MAZARD MODEL

In this section ue describe and validate a model,
hereafter referred to as a losd-hazard model, which
uill form the basis of our tests for a possible
load-failure dependency. 1t will be shoun that if
the load is acting as a stress on the system, then
the load-hazard will incresse with increasing load.

The object of our analysis was to determine
uhether a load-failure relationship exists in our
data, 1.e. uhether a higher load stresses s systen
more than a lower load. In practical terms, if
such an effect exists, we expect the load to sct ss
s stress factor. The proposed mode! is similar in
nature to the familiar hazard rate model from reli-
ability theory. Recall that the hazard rate. which
is the conditional probability that s system in
operation at time t will +4ai! in the interval
(t,t+4t), is defined in [Shooman 68) as:

Pr (Failure in (t,%+8¢))
2(t) = (8 D)
Pr (No failure in (0,%))

A constant hazard rate implies that failures are
occurring randomly in time, {.e. that there is an
exponential failure relationship with time. An
increasing hazard rate implies that the system is
uearing out with time.

§ The workload (or load) {s assumed to be a dis-
crete random variable for this discussion.

SYSCPU (Joint)
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Figure 4. Frequency Distributions: System CPU - 1979, 1980.
System CPU is the fraction of CPU usage spent on system (i.e. non-user) tasks.
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Figure S. Frequency Distributions: EXCP - 1979, 1980,

EXCP is the number of user program 1/0 requests per second, based on five minute averages.
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In close analogy with (V) above we propose s
hazard. This is illustrated by the

follouing elementary hypothetical experiment.
Imagine that the system is operating in the range
0 ¢ x <L, where x is the actual system load and L
its upper limit. Assume that wue have M identical
machines uhich are to be tested for a load-failure
dependency. The experiment consists of testing
each system for failures for increasing values of
x. He commence by defining n increasing values of
x, f.8. %2q¢ C 2z ¢ ... ¢ 2p, 8t which ue uish to
test our computers. The machines are first run in
the range (0, xy). The 1oad on each machine ts
then increased from x4y to x3 and the number of
failures are counted. The systems are then loaded
from x3 to xy and the fsilure frequencies estab-
VTished. This process is continued until the maxi-
mum load Timit xy is reached. 1If failures are load
dependent, we expesct that the risk of a failure
uil). increase uith increasing = in our experiment.
Thigs will bhe reflected in the corresponding fre-
quencies. In more formal terms, we expect the
probability that s system uil) fail at a load level
X * Ax. given that it is currently runging af x.

will inorease uith increasing x.

The conditional probability described sbove
bears a close resemblence to the classical hazard
rate. Accordingly, we define a load hazard 2(x) as

Pr {Faflure in load interval (x.x+ax)}
2(x) = ()
Pr (No failure in load interval (0,x3}

gix)

1 = §(x)
where: g(x) is the conditicnal fatlure probability,
§(x) is its cumulative distrib. function.

1f 2(x) increases with x, {1t should imply that the
load is acting as a stress or uearout factor, 1f,
housver, z{x} remains constant for increasing x, ue
may surmise an exponential relationship with load.

Note that in our definition of load hazard ue
have removed the variability . of system load by
using g(x). Thus in the hypothetical experiment
8!] loads are equally represented. This of course
is not true in practice since load is best
described as & random variable with a prodadility
distribution; it is simply the associated load dis-
tribution, £(x), defined above. In order to deter-
mine the hazard for a particular load pattern, we

{a) Fundamental Hazard

- —

(b) Load Distribution

wust superimpose the associated load probability on
the hazard caloulated in (2). Denoting by 2,(x)
the transformed hazard, we have

zalx) = z(x) &(x) 3)

Me refer to the hazard z(x), sas defined in (2),
as the fyndamental hazard. This is because it can
be thought of as an inherent property of a particu~
lar aystem and is not subject te varying load pet-
terns. When a varying loasd pattern is taken into
account, it can be thought of as "picking eout”
aspects of the fundamental hazard function. This
hazard 2,(x) defined in (3) will be referred to as
the gpparent hazard, since it is closely dependent
on the lToad distribution.

Illustrative Exampie

The follouing example {llustrates hou a perticuler
workload can modify a given fundamental load hazard

2(x). fFigure 6{a) shous s sample fundamental haz-
ard 2(x). Note that 2(x) is increasing with losd.
Thus, 1if all load values are equally likely, the

system has a higher risk of failure at higher load
values than at louer load values. Fig. 6¢(b) is @
hypothetical load distribution nhere the load vari-
able is the fractional CPU utilization, with 0 for
an idle CPU and 1 for a fully busy CPU. Finally,
fig. 6(c) gives the apparent hazard due to the
effect of the load distribution in (a). The appar~
ent hazard is nou decreasing simply because higher
l1oad values are less probabdle.

todel Yalidation

Before using the proposed model on the SLAC load-
failure data, ue tested it on an artificially cre-
ated data base. Our objective uas to test ¢
indeed the hazard model would predict a known
dependency. Tuo tests were performed. In the
first the load hezard was expected to remain
unchanged with increasing load (i.e. that an expo-

nential toad-failure relationship exists). Thus:
-AN
pr {Load induced failure)} = @
where: x = gystem load
A = constant load hazard parameter
A uniform load distribution was assumed. An arti-

ficisl data base consisting of 20,000 load samples
(S minute averages) uas created. The sample uas

(¢) Apparent Hazerd
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Figure 6: Example of Fundamental and Apparent Hazards




then seeded nith failures. exponentially related to
the load level (i.e. load to first failure is expo-
nential). An  unbounded arbitrary load parameter
(e.g the 1/0 rate) uas assumed. The failures were
generated usfng an inverse transformation method
similar to that described in [Fishman 73), for a
hagard value of X = 0.00). In the second test, the
hazard was expected to increase with increasing
load (e.g 8 uniform load failure relationship). A
bounded load parameter (CPU usage) uas modeled. In
each case our hazard mode) uas able to pick out the
knoun dependency. the resulting fundamenta! haz-~
ards, as calculated by our formulation, are shoun
in figures 7 and 8.

A=0.001
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Figure 7: Hazard Plot: Exponential Model
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Figure 8: MNazard Plot: Uniform Model

BAZARD PLOTS

The generation of the hazard plots and associated
statistics involved extensive data processing. In
each hazard plot, z(x) or 2,(x) is calculated and
plotted as a function of a chosen workload vari-
sble, x. In developing hazard plots for the load-
fatfure data, there s an important difference
betueen the real and the artificially created data.
This lies in the fsct that, while an artitical data
base has specific dependencies seeded into it, in
the resi world, failures can occur dus to a number
of causes. Examples are: temperature, humidity,
random noise, mechanical failures, and design
errors, some of uhich are unrelated to our study.
Those factors not related to load can be expected
to behave as noise in a load-failure analysis. 1f
these other factors are predominant, ue can expect
to find no discernable pattern in our hazard plots
{.e. they should appear as uncorrelated clouds
(e.g. see Fig. 9), This is uell understood in any
statisticsl study of dependsncies.

Uncorrelated Cloud

z(x)

O = N W e

Figure 9: Uncorrelated Hazard Plot

An essily discernable pattern, on the other
hand, would indicate that the load-failure depen~
dency dominates others. The strength of such a
relationship can be measured through regression.
Figures 10, 11, and 12 depict the hazard piots for
the three selected !oad parameters. The regression
coefficient RZ, which is an effective measure of
the goodness of #it, is provided for each plot.
Quite simply, it measures the amount of variability
in the data that can be accounted for by the
regression medel. RZ values of greater than 0.6
(corresponding to an R > 0.75) are generally
interpreted as strong refationships {Younger 79).¢

———————————

¢ The range of [R| from O to t is typically divided
as follows: (0, 0.25) moderately weak; (0.25,
0.5) moderate; (0.5, 0.75) moderately strong:
(0.75, 1.0) strong.
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Figure 10: Hazard Plot: System CPV
The vertical scale is exponential in these .
plots, 1indicating that the hazard is rising
sharply st peak loads.
SVC (Fund.) SVC (Load) SVC (Apperent)
v T TTTTTTTYTTrYTY 4
:v'v]-r'v]—r'vw-l-rv'lvr . :'.1 Y v'-vlvv—r—"ﬁv'i L ] l l u%
[ RZ.0.85 1 0.18 [~ ~ : 3 + 3
0.010 b~ = 3 3 : i + ++ 3
% o005 | ? 5 o0 | -3 - 0.00030 | ++ .
- 3 « = E ~ 0.00020 } 4
I 1 0.05 [~ -j ol +
000t b bl D P R [T W W BB )
0 200 400 600 800 } 0 200 400 600 800 0 200 400 800 800
X (sve) X (SVC) X (8VC)
Figure 11: Hazard Plot: SYC
EXCP (Fund.) EXCP (Load) EXCP (Apparent)
100 T
0.20 o.00s0 £ LR 4;
to~! o1 0.0010 - ]
— -— .001 -
- % o010 = 3 ++ 3
¥ 1078 = < 00006 [ + 3
0.06 " F++++ +,+ 3
- hATE N B
lo 3 . D AL 'y 1
9.00 0 20 40 60 0 20 40 60
X (EXCP) X (EXCP)
Figure 12: Hazard Plot: EXCP
It can be seen that the hazards sre
increasing with each of the load parameters shoun. CONCLUSION

The relationship is particularly strong with system
CPU or total CPU as load parameters. This it would
sppear from our data that the load parameters are
acting as a stress factor, j.e. that there is an
increasing risk of failure with increasing load.

The analysis shous that there is a strong load
dependency of internal CPU errors at SLAC. The
observed tendency is present in three years of load
data asnalyzed. This is significant because our
previously reported results could only provide us

Note, houever, that there is some degree of
overlap betueen the varicus load measures consid-
ered. Ideally, one would like to define and esti-
mate a multivariate hazard function which correctly
reflects the relative contribution of each load
measure. In order to effectively achieve this goa)
it is necessary to construct a multivariate utili-
2ation function U (X4, X3, ... Xn) that relates the
many varied measures of load to & single concept of
sytem activity., It is expected that the function U
would depend strongly on system configuration. The
develapment of such & model is currently under
investigation,

with an external view of permanent system and com-
ponent failures. By examining the CPU error gener-
ation process ue have been able to study the inner
behavior of the system and its reaction to errors.
Conscquently, ue have gathered the best data possi-
ble. A load-failure relationship found at this
Tevel must, in our views, be u fundamental
phenaomenon. in addition, the fact that =& Jsrge
majority of these errors are transients or inter-
mittents provides new information on these error
types viz. their load dependent behavior.

Our analysis procedure has been demonstrated on




artifically created data base seeded with fsilures.
The tuo hazard models proposed clearly differenti=-
ate betusen fyndamenta] (or inherent) end gpparent
Joad dependent failures. An estimate of the funda-
sental haszard 2(x), provides the basic load-failure
relationghip. The apparent hazard 2,(x) estimates
hou 2(x) is modified by the 'ocad probabilities. It
is, in principle, possible that even when no inher-
ent relationship exists betueen load and failures.
ue could congeivably obtain an apparent dependency
simply due to the fact that some load values occur
more frequently than others. Alternatively, we can
have the reverse situation where an increasing fun-
damental hazard is transformed into a non-increas-
ing or even decreasing apparent hazard by a dis-
tinctive load distridbution.

As with any statistical analysis, this is not
proof in itself. Houwever, the increasing body of
evidence accumulated on different computers with
ditfering load and failure patterns shous that
workload should be considered as a factor reluting
to reliability. Morkload can be thought of as a
stress on the systewm, with greater stresses result-
ing in greater risk of fsilure. In most cases the
06105} of this stress is not permanent, since wmost
errors asre transient. The design of computer sys-
tems uill he greatly aided if this type of analysis
can help uncover cause and effect relationships in
harduare errors.
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ABSTRACT

This paper presents a procedure for modifying
embedded parity trees so that they are tested by
the inputs they receive during normal, fsult-free,
operation of the oircuit. This eliminates the need
for direct control over the input lines of the
parity tree for testing purposes. The (faults that
are detected are single stuck-faults at the
terminal lines of the XOR gates in the tree.
Applications of this procedure to some other
parity-related embedded code checkers are
presented.

_INTRODUCTION

A wmodular design for complex VLSI systems is
necessary for many reasons. One such reason is
fdesign for testability®. It 1is sizpler to deal
with smsller blocks when the question of test
pattern generation or error chaecking capability is
addressed. Unfortunately, s system that consists
of self-testing blocks is not necessarily self-
testing, For example, consider a network that
includes s combinational circuit B with inputs I,

to Ip. outputs 01 to Ou. and a parity tree C that

calculates the parity of the ouytputs of B, as in
Fig. 1. Parity tree C is tested for all single
stuck-st faults at the terminals of the XOR gates
by the test inputs shown in Table 1. However,
suppose that by applying normal inputs to B,
outputs of B receive only the patterns that are
listed in Fig. 1. In this case, the network of
Fig. 1 1is not self-testing.

This simple example typifies the underlying
problem in building a self-testing network by
connecting self-testing blocks together. The
problem is that it may be necessary, for applying
test patterns, to have direct control over the
input 1lines of an embedded block, i.e., a block
some of whose input lines are not primary network
inputs. Such direct control generally requires
extra pins and/or circuitry on the chip and adds to
the complexity of the design.

The above problem was recognized and explicitly
considered by Anderson, [Anderson 71]. To build s
self-testing network from self-testing blocks he
required that each block be fully exercised, i.e.,
that it receive all its input codewords with the
applicstion of codewords to the inputs of the main
network. This, however, poses a strong restriction
on the design, and for some cases may be {mpossible
to achieve, Smith defined the concept of
sufficiently exercised blocks, which are self-
teating (embedded) blocks that receive their test
inputs during normal, fault-free, operation of the
network, [Smith 76).

Based on Anderson's results, Wakerly concludes
that the general probles of designing a network of

%
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FI1G. 1 An embedded parity tree.
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TABLE 1 Test inputs for parity tree
C of Fig. 1.
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fully exercised (and, for that matter, sufficiently
exercised) blocks 1s a difficult one to solve,
{Wakerly 78). Here, the discussion is limited to
only one class of blocks, namely, parity checkers.
A set of sufficient conditions are stated for the
existence of sufficiently exercised embedded parity
trees. 1f these conditions asre satisfied, then a
slight modification of the parity checker makes it
such that the checker is tested by the input
patterns that it receives during normal, fault-
free, operstion of the network., The faults that
are detected by the normal {nputs are the single
stuck-at faults at the terminals of the XOR gates
in the parity tree. The modification has no
hardware cost or speed degradation sssociated with
it.

NOTATIONS AND DEFINITIONS

Consider s network B® and a combinational block
B in B®, as shown in Fig. 2. B has p 1input lines,
I1 to Ip. and n output lines, 01 to On' The output

of B 1is encoded using techniques such as even
parity encoding. C is a checker that checks
whether the output lines of B form a codeword. C
must have at least two output lines, otherwise, its
only output line may be stuck at its "good™ logic
value and this fault cannot be detected by applying
codeword inputs to C. Therefore, as shown in Fig.
2, assume that C has two output lines. Usually the
output lines of C form a 1-out-of-2 codeword. Thus
the input of C is aasumed to be correct if and only
if the output lines of C carry coaplementary logic
values. For more detail, see (Carter 681,
[Anderson T1], and ([Wekerly 78]. In this and the
next section, assume that the input code space of C
i3 the set of all n-dit words with even parity snd
the output code space of C is the set of l-out-of=2
words. Since input lines of C come from the output
lines of B, C is naturally an eambedded block.
Furthermore, the word patterns that the input lines
of C csn receive during normal, fault-free,
operation of the network depend on the logic
function of B, and in general are only a subset of
all the even-parity n-bit words. The main
objective of this work is to modify the parity
checker C such that the normal inputs of C detect
all single stuck fasults at the terminals of the XOR
gates in C.

Consider a Boolean matrix M whose rows are all
of the (distinet) word patterns that the n output
lines of B receive during normal, fault-free,
operation of the network. If there are m such
patterns, then matrix M is an m by n Boolean
matrix, Note that all the rows of M have even
parity. Call M the (normal) output matrix of B,
The columns of M denote the 1logic values on
individual output lines of B during normal, fault-
free, network operation. Thus, there is a one-to-
one correspondence detween the columns of M and the
output 1lines of B, The «column {n M that
corresponds to output line 01 of B is called the

(normal) column corresponding to line Oi.

The traditional design of the single even parity

FIG. 2 The circuit under consideration.

checker C i3 obtained by partitioning the 01 lines

into two arbitrary groups of preferably equal or
almost equal sizes. Then, for each group, there is
& parity tree that calculates the parity of {its
corresponding lines. The output of one of the
trees is then inverted and, under normsl
conditions, forms a 1-out-of-2 code with the output
of the other tree. For wmore detail, see, for
example, [Wakerly 78], Figure 3 shows an example
of such design for 11 input lines. If the 0i lines
(i.e., output lines of B) are connected to the
input 1lines of C as shown in Fig. 3, then the
normal column corresponding to the ith fnput of C
(from the left) is the same as the normal column
corresponding to °1' However, note that any °t can
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FIG. 3  An example,
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be connected to any input line of C, as long as
every O, line is connected to exactly one input of
C. Thil freedom is the basic tool utilized in the
Algorithm A of the next section. The definition of
normal columns can now be extended to apply to the

internal lines of C. The normal column
corresponding to any line x in C (Fig. 3) is an o~
elezent Boolean column vector whose ith element is
the logic value of line x when the output of B is
the ith row of the normal output matrix of B, for
$=1,2,...,m., That is, the components of the normal
column corresponding to a line x are the logic
values on line x for all normal outputs of B,
applied in the order they appear in the normal

output matrix of B. A 1line x in C is an active

line if 1t receives Dboth 0 and 1 during normal,
fault-free, operation of the circuit. Thus, the
normal column corresponding to an sctive line is a
nonconstant column., A 1line with constant normal
column is a passive line.

THE DESIGN OF SELF-TESTING EMBEDDED PARITY CHECKERS

For a given set F of possible fsults in 1t, a
parity checker C, as shown in Fig. 2, 18 3sid to be
self-testing if for any fault f in F, there is a
normal output pattern of B that causes either a
<1,1> or & <0,0> output for C. Assume a design
such as in Fig. 3 for C. Let the set F of faults
consist of single stuck faults at the inputs and
outputs of the XOR gates. Since there is always a
sensitized path from any XOR gate terminal to the
output of the parity tree, the embedded parity
checker C is self-testing if and only every XOR
gate terminal is an active line [Bossen T0]. Given
a parity checker C and the normal output matrix for
the block B, as exemplified in Figs, 2 and 3,
Algorithm A below inspects every XOR gate terminal
in C to see whether it is s passive line. If it
is, then the Algorithm finds a new connection
between the output lines of B and the input lines
of C that makes that line active. After the
termination of the Algorithm the connection
prescribed by it makes every line in C active, and
hence results in a self-testing embedded parity
checker., In order for the Algorithm to work, the
following conditions must be satisfied:

Al, Circuit C is implemented with two-input
XOR gates.

A2. In M, the normal output matrix of B, no
column is constant and no two columns
are identical or complementary.

Two columns are complementary if they are
complementary in all components, Note that
Assumption A2 amounts to removing the redundant
lines from the output of block B, If the above
conditions are satisfied, Algorithm A below makes
the embedded parity checker C self-testing. Note
that in C (Fig. 3), any terminal of any XOR gate is
the parity of a set of input lines of C. For line
x, this set 1is denoted by S(x). Let M(x) be the
binary matrix whose columns are the columns
corresponding to the fault-free input 1lines in
S(x). To check whether a line x is a passive line,
that {s, to check if the column corresponding to x
is a constant column, one has to check whether the

column obtained by XORing together the columns in
M(x) is constant. 1In other words, x is passive if
and only {f the bit-by-dit XORing of the normal
columns corresponding to input lines in S{(x)
results in a constant vector. Otherwise, x is
active, In Algorithm A, E) and E2 denote the two
primary outputs of the parity checker.

Algorithm A:

1. If E' is passive, exchange any arbitrary Of
in S(E1) with any arbitrary 0J in S(E2).
(This exchange makes E! and E2 active.)

2. Mark E1 and E2.

3. Consider input lines a and b of any XOR
gate with marked output line and unmarked
input lines. 1If, say, a is passive,
exchange any Oi in S(a) with any 0j in
S(b). If this exchange makes b passive,
exchange 0i, which is now in S(b), with Ok,
a member of S(a) different from 0j.

(If before Step 3 both a and b are not
active, then this Step makes them active in
at most two exchanges.)

4., Mark » and b,

5. If there are no more unmarked lines, EXIT;
otherwise, go to 3.

In the Appendix it {s proved that if conditions A?
and A2 sre satisfied, then Algorithm A makes the
parity checker C self-testing.

EXAMPLE: Once again, consider the example of
Fig. 3, with the specified normal output matrix for
B, Since 21 corresponds to the parity of the first

8 inputs of C, with the connection shown in Fig. 3,
E1 will have the following normal column:

- Q0 O0O0O

So, mark both E1 and Ez. Since E1 1s marked,
consider lines x and y., Line x is the parity of
the first four input lines of C. Therefore, the
normal column corresponding to x is an all-0
column; i.e., x is a passive line. To make x
active, exchange the connections of Ou. which is in

S(x), and O_, which i{s 4in S(y). This results in

5'
matrix M' of Table 2, which 1Is obtained by
exchanging columns 4 and 5 of matrix M. This
exchange makes =x active; however, line y becomes
passive, as its corresponding normal column is now
an all-t! column, For this case, Algorithm A
cancels the latest exchange, and instead exchanges
o5 with another member of S(x), say, 03. This
exchange results in matrix M™ of Table 2, which is
obtained from M by exchanging columns 3 and 5, It
makes both x and y active. The continuation of the
Algorithm results in no more exchanges, The matrix
M™ is translated into the connectjion shown in Fig,
4, All the lines in parity checker C of Fig. 4 are




active, Therefore, the embedded checker C 1s self-
testing.

11010100110 11100100110
001011010112 000111010112
M =2110001110101 M =il10010110101
01001011110 0loloo0ll1llo
01100010111 0loolololll

TABLE 2 Modified output matrices for
the example of Fig. 3.
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FIG. 4 Self-testing connection for
the parity checker of Fig. 3.

APPLICATIONS

Algorithm A can be used to design self-testing
embedded checkers for other parity-related encoding
schemes. .

Self-Testing Embedded Two-Rajl Checkers

The self-testing two-rail checker tree with n
input pairs, as descrided in (Carter 63] and
[Anderson 71], has a one-to-one correspondence with
an  n-input parity tree, where each input of the
parity tree is replaced with an input pair from the
two~rail code, and each XOR gate is replaced with a
two~rail checker with two input pairs and a 1-out-
of-2 output code, Fig. 5 shows a self-testing two-
rail checker tree with 8 dinput pairs. The
corresponding parity tree for this is shown in Fig.
6. If the 0i lines of Fig. 5 satisfy Assumption

A2, then Algorithm A can be applied to the circuit
of Fig., 6, and any changes done on this circuit can
readily be translated back into the originel two-
rail checker of Fig. S, If line T of Fig, 5 (and
hence of Fig.6) is passive, the two—rail input
pairs should be partitioned into two arbitrary
groups, as in self-testing parity checker design,
and the pairs in each group should have a separate
two-rail checker. A trivial such partitioning for
circuit of Fig. 5 is shown in Fig. 7. As far as
speed is concerned, this {s not a good partition;
however, other partitions are possible that result
in faster checkers, Now each tree in Fig. 7 can be
translated into a parity tree, as described above.

I !
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FIG. 5 A self-testing two-rafl checker 1
tree,
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FIG. 6 Parity-tree equivalent of
Fig. 5.
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FIG. 7 A partitioned two-rail checker,




20

Self-Testing Embedded Detector for SEC-DED Circuits

Single error correcting and double error
detecting (SEC-DED) codes are a very popular means
of checking/correcting faults in memory srrays. The
general scheme for SEC-DED decoders 1s shown in
Fig. 8. Such circuits are naturally embedded. In
particular, {f they are used with ROMs, one may not
be able to apply the required test patterns to
these circuits since the contents of ROMs are
predetermined. Thus it 1is necesssry to wmake
modifications to make such embedded SEC-DED
circuits self-testing. Here we use Algorithm A to
make the detector portion of the circuit self-
testing.

As 8 specific example, consider 16-bit input
data. This requires 6 check dita. Thus, 1n Fig.
8, n=16 and mz6. Hsiao has provided an optimal
cireuit for this case, (Haiso 70]. The same design
has been used in some commercial products, e.g.,
TI's SNS4/THLS630. Let the data lines be denoted
by d0 to d15. snd let the check bdbits de e, to °6'

Figures 9 and 10 show the design of the syndrome
generator and the error detector, reapectively, as
given in (Hsiso 70]. The control lines have been
left out for simplicity. The following descridbes a
procedure for making the the detector portion of

the oircuit of Fig, 8 (i.e., circuits of Figs. §
and 10) self-testing. The procedure works 1if all
the 22 input 1lines of the SEC-DED circuit satisfy
Assumption A2.

First, each XOR tree block of the syndrome
generator must be wmodified as shown in Fig. 11,
For the particular example at hand, there are six
such parity checkers, each with a 1-out-of-2 output
code. Thus the output of the syndrome generator is
a two-rail code with six pairs, <E1.E;> to

<E6.Ea>. If for all normal inputs to the circuit

E, ®... @56 ts constant, take any one of the six

parity checkers of the syndrome generator and
exchange line 09 with any of the other eight lines,

(Fig. 11). After this, the adbove parity is no
longer constant {Khakbaz 82al. For any of the six
parity checkers just obtained, use slgorithm A to
make it self-testing. Since all the Ei output

lines of the syndrome generator are (inverted)
primary inputs to the SEC-DED circuit, they satisfy
Assumption A2, Hence an (embedded) self-testing
two—-rail checker can be designed, as described
above. This replaces the OR gate of Fig. 10,

data dits| n

T THE_DETECTOR PoRTrON

check -

|

bits

FIG. 8 SEC-DED decoder circuit.
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the syndrome generator.

Finally, to distinguish between single and double
errors, the Ei lines are input into a parity tree.
Similarly, a~ second parity ¢tree calculates the
parity of the E{ lines. Since the parity of the

E, lines (similarly Ei lines) were made to be

i
nonconstant, and since the 51 lines (similarly Ei

lines) satisfy Assumption A2, they can be made
self-testing using Algorithm A, Figure 12 shows
the self-testing embedded error detector portion of
the SEC-DED circuit of Fig. 8. If all the inputs
to the SEC-DED circuit are correct, then the
syndrome generator produces a two-rail code and
<R,R'> results in a t-out-of-2 code, If one or
more input iines are erroneous, then the output of
the syndrome generator will not be two-rail, and
hence <R,R'> does not form a t-out-of-2 code, By
the special encoding of [Hsiao 70) that s used
here, and by the special design of the syndrome

(s E' €,
=
: & - — jl two-rai? Rl
1 H C |ehecker R
| ‘ Eg
| T
t
2 | .
frout st I0R tree | P
) -
ts
S I';] S| T0R tree e
-
FIG. 12 Modifted detector portion for

self-testing embedded SEC-DED
decoder circuit.

generator, one erroneous input results in an odd
number of erroneous lines at the output of the
syndrome generator, i.e., of the 12 output lines of
the syndrome generator, an odd number would be
erroneous., Similarly, if two input lines are
erronecus, an even number of the output lines of
the syndrome generator will be erroneous. It is
not hard to see that the <P,Q> pair of Fig. 12
forms a 1-out-of-2 code if and only if there are an
even number of errors on the 12 input lines to the
two parity trees., This argument leads to Table 3,
which indicates how to interpret the outputs of the
eircuit of Fig, 12.

R RI__P s] meaning

correct 1nput

stngle error

)
doudle error }
!
J

- atsOorl.

TABLE 3 Reading of outputs of the

circuit of Fig. 12.
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_GONCLUSION

A procedure has been developed for designing
embedced parity checkers that are self-testing for
all single stuck-at faults at the terminals of the
XOR gates. This procedure has no hardware cost or
speed degradation associated with it. However,
applications of it to other parity-related code
checkers may have a slight speed penslty (e.3.,
Fig. 11),

There i3 much room for expanding the ideas and
methods presented in this paper. In particular (1)
work needs to be done on finding other codes for
which self-testing embedded checkers can be
designed, and (2) other slgorithms should be
developed for detecting a more extensive set of
faults in the checker. One such algorithm has deen
developed recently that results in an embedded
psrity tree that is self-testing for all faults
within any single XOR gate [Khakbaz 82b].
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APPENPIX

Consider s set V of a-bit binary vectors, If v is
in V, the set obtained by removing v from V §s
denoted by V-v. Also, the set obtained by adding a
new vector w to V is denoted by Vew, Let p(V) be »
vector odbtained by bit-by~bit XORing of the vectors
in V. That {s, the 4{th element in p(V) 18 the
parity of the ith row of a matrix whose columns are
the members of V, Call p(V) the parity vector
corresponding to V. Similarly, define p(V-v),
p(Vem), and so on.

LEMMA 1 Let u, v, and w bde ma=bit binary column
vectors, If both u@v and u(@w are constant
vectors, then either v and w are identical or they
are complements of each other,

LEMMA 2 Let V de a set of m-bit Dbinary column
vectors, Let v be in V. Then, p(V) = p(V-v) & v,

LEMMA 3 Let V be a set of a=bit binary column
vectors, Let w be an m=bit binary column vector
not in V. Then, p(Vew) = p(V) @w.

The proofs of the above Lemmas are simple and
directly follow the definitions.

4 If Assumptions A1 and A2 hold for the
parity checker C, as exemplified in Fig. 3, then
Algorithm A makes all the lines in C active.

PROOF  First, show that after Step 1, both E1 snd
E2 are active. If they are active from the
beginning, Step 1 does nothing, and the assertion
is trivially true. So, assume E! i{s passive at the
beginning. Since the normal column corresponding
to E1 13 complementary to thst of E2, E2 would slso
be passive. Thus p(S(E1)) and p(S(E2)) are
constant vectors., The exchange {n Step ! results
in two new sets of input lines corresponding to E1
and E2, as follows:

S*'(E1) = S(E1) - 04 + 03;
and S'(E2) = S(E2) - 0§ + 01,

But originally

S(E1) = S(E1) = Of » 01
and  S(E2) = S(E2) - 0 + 03.

If p(S'(E1)) is also constant, then by Lemmas 1, 2,
and 3 it {3 concluded that O1 and 0j are identical
or complementary, contradicting Assumption A2,
Similarly, it can be shown that p(S'(E2)) 1is not
constant. Thus E1 and E2 are active at the end of
Step 1.

Now consider Step 3. Let a and b be the two inputs
to a gate whose output has been marked, but whose
inputs have not been marked. If both a and b are
active, they are marked, If, say, a 1s passive,
exchange Of in S(a) with 0j in S(b) to get:




S'(a) = S(8) = 0t « 035 (1)
and  S'(b) s 8(b) = 0) + 01. (2)

it can Dbe shown
However, now b
the 3specified

By 3 similar argument as sbove,
that this exchange makes » active.
may be passive. In this case
exchange results in

S"(a) 3 S'(a) = Ok « 01; (3)
and  S™(d) = S'(b) - 01 + Ok, (W)

Existence of such Ok different from Oj in 3'(a) is
guaranteed, since otherwise 3S'(a) and hence S{a)
would have only one member, which by Assumption A2
would i{mply that in fact a could not have dbeen
passive to start with. Substituting (1) in (3) and
(2) 1n (#):

S"(s) 2 S(a) - Ok & OF; (5)
and  S"(b) = S(b) - CJ + Ok. (6)

Since S{a)sS(8)-Ok+Ok, and p(S(a)) 1is assumed to be
constant (since a was originally passive), then
p(S"(a)) may not be constant; otherwise (5) and the
sbove Lemmas would yleld that Ok 1s identical or
complementary to 0j. Also since it was aasumed
that p(S'(b)) wass constant (i.e, since 1t was
assumed that the first exchange between 01 and 0)
made b passive), then p(S"(b)) would not Dde
constant; otherwise, (2) and (6) would imply that

0L 1s either identical or complementary to Ok.
Therefore in at most two exchanges in Step 3 lines
s and b become active and are subsequently marked.
Since esch time that Step 3 is executed two lines
are marked, the Algorithm stops n a time
proportional to the number of the 1lines {n the
tree. Finally, {f t {s the output line of the gate
with input lines s and b, then, by the structure of
the tree, S(t) » S(a) UNION S(b). Thus, any
exchanges between S(a) and S(b) do not affect the
fact that t (or, for that matter, any ancestor of
t) i3 an active 1line. In other worda, during the
process of the Algorithm, all the marked lines
remain active. Q.E.D.

THEOREM If Assumptions A! and A2 hold for the
parity checker C, then Algorithm A makes C self-
testing for all single stuck-at faults at the
terainal nodes of the XOR gates.

PROOF By Lemms 4, the Algorithm A makes all the
lines in C active. Suppose line x in C is stuck at
u(u {sOor 1). Since x 1s active, there i3 s
normal input pattern to C that, under fault-free
condition, puts logic value u' on x. Assume x is

in S(E1). Then, with x stuck at u, the above input
pattern causes erroneous logic value on E1, Thus,
<E1,E2> does not form [] t-out-of-2
codeword. Q.E.D.
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ABSTRACT

Applications of watchdog processors for
detection of system malfunctions are describded.
Low-cost watchdog processors can be designed so
that they have knowledge about the design
specifications of a system and therefore can detect
a large class of malfunctions by wmonttoring the
run-time behavior of that system,

The concept of capability checking s
introduced. Capability checking i3 aimed at tre
detection of malfunctions that cause illegal sccess
to the memory system. It 1s shown that only a
subset of such malfunctions {s detected by the
operating system, In the capadility checking
technique all access-right information is given in
advance to an auxiliary low-cost processor, called
a —capability processor, The capability processor
checks the validity of each access to the memory
system dynamically. The implementation details of
a8 capability processor are explained.

INTRODUCTION

One of the most basic techniques for checking
the behavior of a system is the use of a watchdog
timer [Con 72), [Orn 75]). The system is designed
such that under normal operation it signals the
watchdog timer within a specified time interval.
This signal presets the timer to its initial value.
The timer generates an error if no preset signal is
received during that specified time interval. It
is obvious that many malfunctions can occur while
the system still generates a correct timing signal.
In this paper we study the design of low-cost, yet
more sophisticated watchdog processors for
concurrent testing of a system. Watchdog processors
{Lu 80) can be designed to have more knowledge
about the design specifications of a system and
hence be able to detect abnormal behaviors of that
system at runtime.:

Several approaches [Bol 78], (Yao 80] have been
proposed for detection of malfunctions which result
in control flow errors. Equally important is to
study the effect of these malfunctions on the way
the memory is referenced. This would be an attempt
to detect system malfunctions as well as to prevent
memory mutilation.

The idea of capability checking presented here
13 to use an auxiliary low=-cost processor, called a2
Capability Processor (CP), to verify the validity
of memory references. A typical configurstion for
the asystem is shown {n Fig. 1. The capability
processor operates in parallel with the CPU and
detects a large class of illegal accesses to the
memory system; a subset of these illegal accesses
also is detected by the operating systea.

10
Py MEMORY
ERROR WATCHDOG
PROCESSOR
Figure 1
SYSTEM LEVEL MALFUNCTIONS

Classical methods of testing concentrate on
functional testing at the eircuit level.
Unfortunately there exists a gap between the effect
of faults at the circuit level and their behavior
at the system level. As a very simple example
consider a memory system that uses extra check bits
for error detection and correction. Some multiple
bit errors may go undetected at the circuit level.
At the system level this may correspond to changing
a correct instruction to am incorrect one causing
the program to perform a different operation. We
can detect such errors if:

1).The design specifications (from which the
behavior of the system can be predicted) are known.

2) The errors cause abnormal behavior of the

system,




Much research has bdeen done in the area of
operating systems which support protection [Sal
75]. In a typical descriptor-based system such as
the IBM S8/370 or the PDP-11/45 [Sal 75] the
operating system loads the descriptor register with
the base, limit, and the access right information.
On the other hand Iin s capability-based system {Fab
78] such as the PLESSY S/250 [Eng 74] or the
Cambridge CAP computer (Wil 79] the users
themselves can load the descriptor register but
only from a limited set of descriptor values (or
capabilities) that has been given to them by the
operating system.

Information used for the purpose of protection
is stored in the memory, and in general, all
protection systems assume fault-free hardware. This
assumption, however, can be invalidated and
protection violations can go undetected. This
problem Dbecomes more serious i{n virtual memory
systems or capability-based systems where many page
tables or capability-lists are stored in the main
aemory. There are three categories of erroras that
may not be detectad by the operating system:

1) Errors 1{n a mwmemory word, protection
registers, address bdus, ete, caused by hardware
failure.

2) A software error (accidental or malicious)
in a user program.

3) A software error in a system routine which
is assumed to be highly trustable.

As an example of a hardware failure that can
result in protection violations, consider the
paging system in the VAX-11 ([Lev 80]. A program
references the memory by giving the Virtual Page
Number (VPN) and an offset in that page. The VPN
points to an entry of the Process Page Table (PPT).
A Process Base Register (PBR) points - fo the PPT.
The ohysical address 1is formed by concatenation of
the Page Frame Number (PFN), derived from the Page
Table Entry (PTE), and the offset in the
instruction, as shown in Fig. 2. The following
hardware failures can cause a wrong memory access
not detected by the protection system:

Main Memory
Sase Reg. (PSR) (PPT)

l—___— PIE
QP | VPN QFFSET
S et

B4
P ———

L__PFN ] oFfseT ]

—
Physical address =e address bus

Figure 2

a. An error in the PBR or PTE (PBR and PTE can
be changed only by the 0S).

b. An error in the VPN. (part of the address
in an instruction).

c, Fatlure of the access check mechanism (CPU
failure) and invalid access attempt.

d. A fault on the address bus.

On the other hand, most software errors are due
to design and coding errors and in general it is
very difficult to guarantee that once the software
passed its test, it is free of any errors [Yao 80].

CAPABILITY CHECKING

Before proceeding to the subject of capability
checking 1t is helpful to define the terms which
are used in this paper,

> A gystem level malfunction is a
deviation in the behavior of a system from its
design specifications as a result of a hardware
failure, s software error, or a design error.

In the presence of a system level malfunction
the operation performed by the system i3 either
1{1legal or incorrect.

Definition: An operation is illegal if, based
on the design specifications, that operation is
never allowed. For example execution from a “data"
segment {s an illegal operation.

Definition: An operation is {necorrect if based

on the design specifications and the current
conditions, that operation is not correct. However
the same operation can be correst undef certain
conditions.

For example if a program can write into two
different data segments S1 and S2 depending on the
value of a predicate "P", an incorrect operation
would be to write into S2 instead of S1 as a result
of an error in "P",

In general, detection of incorrect operations
1s more difficult than detection of {llegal
operations. Most 1incorrect operations occur as a
result of incorrect decisions at branch points.
These decisions {n general can depend on the input
data. Redundant predicates can be used to minimize
the probabdbility of a wrong decision [Kan 75). In
this paper we concentrate mostly on the detection
of 1llegal operations, although some incorrect
operations can also be detected.

Definition: An object 1is a set of logically

contiguous memory cells whose type determines the
class of operations that can dbe performed on it, A
process can have a set of owned objects with full
access to them. In additfon, a process can be
given access to some (external) objects by the
owner of those objects. Examples of objects are: a
program, a data segment, or a page.




Pefinition: A capadility to an object is a
special name that allows a specific access to that
object, It has a unique logical address field, s
type and an access right field.

At any given time a set 0s(01,02,...,0n}
represents the set of all active objects.
Ci=z{C11,C12,...,Cik} i3 the set of capadilities
that are given to the object Oi. An object 01 has
to present a capability Cij in order to access the
object 0J. The access right is alj. The operation
of the capability pr is as follows:

A. From the point of view of the capabdbility
pr each pr S is defined by a set of code
and datas obJects. The set of active objects
(stored in the physical segments of the primary
memory) can be represented by a directed graph; an
example is shown {n Fig. 3. A vertex in this graph
represents an object, An edge shows the access
right of an object to another.

Figure 3

Before a program is initiated, all access-right
information 1is sent to the CP. This 4is done by
loading the Segment Access Table (SAT) and the
Segment Map Table (SMT) in the CP, The row Si (Si
{s the segment ID of the object O1) in the SAT
contains the set of access rights for the object Of
(1.e. ai}j for Js1..k). An entry SAT(31,S)) in the
SAT shows the access right of the objset 01 to the
object 0]3. A null entry denotes the no access
situation. For any code object O0i, the entry
SAT(S1,Si) 1s an execute access right. An object
Ok can be shared between two code objects Oi and OJ
with different access rights:

SAT(Si,Sk)saik and SAT(S3.Sk)sajk ;alkzeajk

B. For each memory reference, the physical
address {s translated to a segment 1ID using the
SMT. This segment ID is used in turn as the
address for accessing the SAT. Two segment IDs are
required to access the SAT. The first is the
segment ID (S!) of the current code object (O1).
The second is t@e segment ID (SJ) of the object
(0J) referencad by the current object., Si and S}
are determined from the physical address in each
reference and the mapping information in the SMT.
If the requested access by the CPU is not
consistent wicth SAT(S1,Sj) which 18 resd out from
the SAT, the capability processor signals the main
processor and the main processor initiates a
recnvery routine for handling the detected error.

ENTATION

The following assumptions are made: First, all
access information given to the capabfility
processor by the main processor 1s error free. If
not, the CP may signal an access error while an
sccess i3 legal and fail to signal while the access
i{s illegal. Second, the probdability of simultaneous
fajlure of the main system and the capability
processor is very low. Third, all accesses from
any location in an object Ox to any location in
another object Oy are "equivalent®., In other words
if the object Ox can write into the object Oy, this
technique would not check whether or not the
referenced location within Oy 13 correct.

The first stage of the capability pr is
an address translator. It translates a physical
address into a segment ID wusing the mapping
information, and it determines the type of the
segment (code or data). In the case of a paged
memory system all references to different pages of
an object are mapped onto a8 unique segment ID for
that object using the SMI. This requires one
sccess to the SMT.

In Fig. & register Rx holds the segment ID of
the current code segment, 3i, which {3 determined
from the current memory refereance using the mapping
dats in the SMT. The segment 1ID for the next
reference to the memory, SJ, i3 also determined and
loaded into register Ry by the capability
processor. The entry SAT(3§,3J) 13 read out from
the SAT and is compared with the access requested
by the CPU. The watchdog signals an error if this
comparison fails. Notice that in this method the
capability processor checks the validity of esch
access in parallel with the CPU operation. Once a
successful access s completed, the capability
processor loads Rx from Ry only if Ry holds the
segment ID of a code segment. This operstion is
repeated for each memory reference.
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Operations are divided into three classes: the
first class includes operations in which an operand
is accessed by the operation, Examples are read,
write, add, and move, In this case the instruction
{s fetched from a code segment and the operand is
in a2 ~data segment, The content of Rx will not
change after suck operations.



The second c¢lass 1includes simple control
operations such as jump and set flag. The expected
access right for such operations is "execute" and
the content of Rx will change after such operations
if and only if a transfer to another segment
oceurs.

The third class includes call and return
operations. In this case the expected access right
i3 "enter”™ or "return" and again the content of Rx
will change after such operations if and only if a
transfer to another segment cccurs.

Capability checking can de implemented using
memories that are as fast as the main memory. When
the main processor locads the pages of a process
into the main memory, the corresponding
capabilities are loaded into the SAT. During the
execution of a process, some of its pages may be
swapped in and out of the physical memory. For
each page replacement, only one entry in the SMT is
updated. The entries of the SMT corresponding to
the removed pages are marked as invalid and any
access to these pages is considered illegal.

In capability checking the accessibility of
memory segments is checked on the basis of physical
addresses at the processor-memory interface. Once
an illegal access is detected the CPU {s informed
and a recovery routine is initiated, Since the CP
operates in parallel with the CPU, it does not
degrade the systes performance. Notice that
updating the SAT and the SMT can be overlapped with
the time required for swap-in and swap-out of the
pages which {s a slow operation. It {s also
possible to take samples of the memory references
(at a slower rate) and use the same concept for
checking the capabilities for those samples.
However, in this case since the checking is not
done exhaustively, some 1illegal sccessea may go
undetected.

CONCLUS JONS

Low=cost watchdog processors can be designed to
detect abnormal bdehaviors of a system under
operation. In capability checking the
accessibility of each memory reference {s checked
on the basis of  physical addresses at the
processor-memory interface. Since the checking is
done in parallel with the main processor, there is
no degradation in the system performance., However,
there is a possibility that a few illegal accesses
occur before the CP signals the main processor, In
order to keep track of 1illegally accessed
locations, a buffer can be used to save the address
of the last m (e.g. mz10) references,

Such a capability processor can be used as a
redundant protection scheme in systems where a high
degree of security, is required. On the other hand,
this method by ({tself is an economical way for
increasing the reliability of small systems.

Current active research in this area includes
the design of watchdog processors for checking the
flow of execution or the integrity of data
structures, Preliminary results in this area are
given in (Nam 81].
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ABSTRACT

In this paper, an encoder slgorithm for the
design of an sutonomous Linear Feedback Shift
Register (LFSR) with specified minimum distance and
cycle length is presented. The fault detectability
on the feedback path of this LFSR encoder is then
discussed. This shift register design significantly
extends the work in the 1literature [Hsiao 771
(Pradhan 78], and is based on cyclic codes.

1 INTRODUCTION

An autonomous Linear Feedback Shift Register
(LFSR) is an autonomous linear sequential network
Elspss 59) (Kautz 65] (Zierler 59] for generating
sequences of a given cycle length (or period). This
LFSR i3 composed of interconnections of unit-delays
(or D Flip~Flops) and modulo-2 adders (or Exclusive
OR gates), as shown in Figure 1,

The LFSR has been used in many different

applications. Example of these applications sre:
pseudo-random (Golomb 671,

number enerators

signature analyzers (Benowitz 75] [McCluskey 811,
shift register counters ([Gachwind 751, store
address generators [Hsiao 77] {Pradhan 78], etc.
For instance, in the LSI/VLSI chip designs using a
random testing scheme (Losq 76], the random input
sequence feeding into the Device Under Test (DUT)
can be autonomously generated by an LFSR of minimum
(Hamming) distance 1, or by an LFSR encoder of
minimum distance at least 2 (Hsiso 771.

An LFSR of wminimum distance t {(or distance-1
LFSR) is an autonomous LFSR with minimum Hamming
distance 1 smong the generated states, It cannot
detect asny fault inside itself. If a frault (or
error) occurs that csuses a faulty input sequence
to the DUT, albeit good, the output response will
be 1incorrect which may result in the DUT being
rejected. This fault may be detectable on-line if
an LFSR encoder of wuinimum distsnce at least 2

This work was supported in part by the Natiocnal
Seience Foundation under the Grant Number MCS-
7904864, and in pert by Intel Corporation under the
Honors Cooperative Program (HCP).

#The author is slso with Intel Corporation, Santa
Clara, CA 95051.

followed by an error detector 1is adopted. It
depends on how big the minimum distance 13 used.

2 LFSR PROPERTIES
Figure 1 shows a general form of an n-stage

LFSR with corresponding characteristic polynomial,
defined by

f(x) = 1¢h1loh2120...ohn_1

x"".x". (1)

where h, (1<1<n=1) is either one or zero.

%

% 8
Figure 1.

%n-? %u- 1
The general form of an LFSR.

The behavior of an LFSR can be interpreted as
an ordered cyclic chain of states S; which are
symbolic repreaentation of the contents of an LFSR
during successive shifts, given the {nitial
contents as So. Let Si represent the contents of

an n-stage LFSR after the 1‘" shift of the initial

contents, So. of the LFSR, and Si(x) be the
polynomial representation of S‘. then si(x) is a
polynomial of degree n-1i,
n=1
Si(x) ® 810‘311”""31n-1x . (2)

The following is a fundamental relationship between
the states in a cycle [Hsiao 77]:

8,0 = x*Js,(x) mod £em). 3
If T is the 1least positive integer such that f(x)
divides xr-1. then for any state 51(')'

8,00 = £7S,(x) mod £(x). )
The integer T is called the exponent of f(x) and

the period of the LFSR.
3 ENCODER DESIGN

Let a polynomial with coefficients in the
Gslols Field GF(q) [Peterson 72] be said to be a

lynomial over GF(q). A polynomial p(x) of degree
® over GF(q) i3 called primitive if its root b of
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GF(q.) with p(b)z0 generates all the nonzero

elementa of GF(q"). A polynomial g(x) of degree n-k
over GFq) for generating an (n,k) cyclic code is
called a generator polynomial if it is unique and

i3 a divisor of x"-1. An (%) cyclic code 1is an

(n,k) linear code containing a set of qk n=tuple
distinct code words with the following property: If
an n-tuple {s a code word, then the resulting n-
tuple by rotating the code word one place to the
right is also a code word (Lin 70].

Let p(x) and g(x) denote a primitive
polynomial of degree k and a generator polynomial
of degree n-k over Galois Field GF(q),
respectively. (Hsiao 77] has shown that given a
required k message digits and a desired design
(minimum) distance dntn' an sutonomous LFSR can be

constructed to generate qk-1 n-tuple distinct code
words by using the characteristic polynomial
f(x)=g(x)p(x). The initial contents, so(x). of the

LFSR can be preset to any nonzero code word. This
theorem is based on an (n,k) cyclic code with g(x)

dividing x"-1, and 13 applicable to an LFSR design

with perfod T=gK~3-1 for 0<s<k by deleting s digits
from the k message digits. The result is an
(n-s,k-s) shortened cyclic code. However, it 13 not
applicable to an LFSR generating an arditrary

period., VWith period T not equal to qk"-1. the
initial contents of the LFSR have to be chosen very
carefully to avoid producing an incorrect period.

Definition 1: An (n,k,T) LFSR encoder is an n-
stage asutonomous LFSR for generating T n-tuple
distinct code words (or states) by the T
consecutive shifts of the LFSR, It consists of k
message digits and n-k parity check digits.

Theorem 1: An (n,k,T) LFSR encoder can be
constructed using f(x)=g(x)p(x) as a characteristic
polynomisl over GF(q), if the {nitial contents,
so(x). of the LFSR 1is divisidble by g(x), i.e.,

so(x)-l(x)a(x). and both a(x) and p(x) have no

common factor, where g(x) is a generstor polynomial
of degree ran-k for generating an (n,k) cyeclic
code, p(x) 13 a polynomisl of the smallest degree k
for generating e prescribed period T, and a{(x) is a
polynomial of degree k' or less,.

Proof: See [Wang 82).

Theorem 1 1is applicadble to an (n~s,k-s,T’)
LFSR encoder design by deleting s digits from the k
message digits for 0<s<k. It implies that every
code word 51(‘) of an LFSR encoder is divisible by

g(x), and the Greatest Common Divisor (GCD) of
so(x) and plx) is g(x), 4.e., GCD(So(x), p(x)) =

g(x), If the GCD of So(x) and p(x) is not g(x),

the LFSR will produce an incorrect period and may
result in different minimum distance.

Example 1: Deaign s (6,3,4) LFSR encoder using

f(x) =g(x)p(x) 1(1010!3)'[(101)(1032)] s1¢x3oxsox6.

The circuit 1is shown in Figure 2. The desired
So(x)'a for the (6,3,4) LFSR encoder are marked by
(%). Each Sp(x) and p(x) have a GCD ;(x):1ox¢x3.

Table 1. The So(x)'s with resulting T and d.

in° 3
so(x)3 T dain
Texex ] &8 (®)
(10:0:3)(1¢x) 2 ]
(lezex) (142°) 1 0
(1oxex3) (1exex®) 5 O

LD-—D—D-LD—-D*LDJ ‘
Figure 2. A (6,3,8) LFSR encoder

The synthesis of a polynomial p(x) of the
smallest degree k for a prescribed period T was
presented in (Wang 82]. Theorem 2 provides an
encoder algorithm to derive the required g(x) based
on Bose-Chaudhuri-Hocquenghem (BCH) codes [Peterson
72]. BCH codes are cyclic codes. Let b be an

element of GF(q'). For any specified integer c and
design distance d, the code generated by g(x) is a
BCH code, if and only if g(x) is the polynomial of

the smallest degree over CF(q) for which be.
beol cede2

eecay D are roots.

Theorem 2: A (2"-1,k,T) LFSR encoder with
design distance, d'1n. at least 2t+1, where t is

an ifnteger, can be constructed using f(x)=g{x)p(x)
as a characteristic polynomial, if the polynomial
p(x) is of the smallest degree k for generating a
prescribed period T, and the generator polynomial
g(x) of the code is given by

gi(x) = LCM<a, (), Ia(!)..... '2:-1"”' (5)

the Least Common Multiple (LCM) of ni(x)'a of
degree m (121,3,5,...,2t=1), where n1(x) is a
primitive polynomial of degree m, its root b over
GF(2™) 1a of order 2™-1, and m, (x)(1=3,5,...,2t-1)

13 the minimus polynomtal of bl,

Proof: See [Wang 82].

A winimum polynomial ml(x) of root b1 over
cr<q“) is a polynomial of the smallest degree over
GF(q) such that mi(bi)so. Table C.2 [Peterson T2]

provides a list of minimum polynomials of root b1
of degree 34 or less. Since a primitive polynomial
is a minimum polynomial of root b, g(x) can thus be
found from Table C.2 [Peterson 72). Table 2 lists
the required g(x)'s of degree r for designing some

of (2"-1,k,T) LFSR encoders with d_ =3, 5, or 7.




The number of Kk message digits was obtained by
setting it to 2%-1-r,

Table 2. The g(x)'s for (2'—1.k.r) LFSR encoders
of du(n'3' 5, or 7.

U]
(2 ~1,k,T) dnln ;(1)3
(7,4,5) 3 lexex
(15,11,23) 3 1exex

u 2.3 .8
(15,7,127) 5 (1exex )(lexex“ex"ex )

(15,5,31) 7 (lexex®)(texexZerdex) (1oxex?)

The above theorem is applicable to (n'.k',T')
2 (2™-1-3,k-3,T*) LFSR encoders [Hsiac 771 (Lin 70]

(Peterson 72] for o<s<2™! Since f(x) always
contains a factor 1+x when T 1s even, by the
property (Hsiac 771 [(Pradhan 78] [Peterson 72] that
the minimum distance of the generated code space is
even if 1ex {is 8 divisor of f(x), the resulting
design distance of the LFSR encoder will be an even
number 2t+2, if the period T is even; and an odd
number 2tel, if T is odd. In implementing an LFSR
encoder with desired even minimum distance of at
least 2t+2 for a prescribed odd period T, the
generator polynomial should be modified as

g(x) = (1.:)'LCH<-1(1). n3(x)..... th_1(x)>. (6)
Example 2: The following examples were derived from
Table 2 by deleting some message digits. For

instance, the (6,3,4) was derived from the (7,4,5)
of dnin'a by deleting one message digit. Since the

period 4 1is an even number, the (6,3,3) LFSR
encoder will have a design distance 3+128,

Table 3. (2%-1-3,k-3,T') LFSR encoders.

(n' k', T") 4ain g(x) p(x)

3 3
(6,3,%) § 1¢xox 1¢x¢x +X
(11,3,8) 6 (1020: )(10:0: 3¢x ) 1ox+x ¢x3
(7,37 & (lex){lexexd) texex3
(12,3,7 6 (1¢x)(10:0:“)(1oxoxzox3ox") 1.:0:3

4 FAULT DETECTABILITY

An encoder algorithm for the LFSR design with
desired period T and minimum distance d nin has been

presented. This LFSR encoder gives a Totally Self-
Checking (TSC) error detector the on-line fault-

detection capsbility to detect at most duin"

errors on the encoder output [Wang 82]. The fault
model can be any combination of faults, such as
Stuck-at faults, bridging fsults, and external
disturbances (or noise), which manifest themselves

by changing at nmost dnin -1 positions on the

output of the LFSR encoder, However, it is not
clesr whether the fault that makes the entire
feeddack path assume an erroneous state is
detectsdble or not. For inatances, an error on the
feedback path of Figure 2 may produce 3 errors in
the state.

Definition 2: An  (n,k,T)s(2%1,k,2%-1) oyelte
code 13 an (n,k) cyclic code of period 2k-1. An

' -
(n'.k'.z -1)=(2" -l=8,k=8, zk 5_1) shortened cyelie
code {3 an (n',k') shortened cyclic code of periocc

2k"-1. by deleting s digits from the Kk message
digits for 0<s<2™!

[Hsia0 77] has shown that in the (n.k.zk-1) s

(2-1.k,2k-1) cyclic codes, the effect of a fault
on the autonomous LFSR feedback path is only to
produce a noncode word which differs in the first
stege of the LFSR from some valid code word. In

implementing an LFSR encoder by (n'.k'.zk'-1) =
(2%-1-8,k=5,2%"-1) shortened cyclic codes for

0<s<2'h1. the effect of » fault on the LFSR
feedback path is proven to produce errors exactly
at distance d.‘n-1 from some vslid code word.

]

Theorem 3: In an (n'.k'.zk ~1) LFSR encoder
design implementing a shortened cyclic code, the
effect of a fault that makes the entire feedback
path assume an erroneous value 1is to change the
correct state (a code word) to an errconeous statc
(noncode word) which is exactly at distance d pin~
from some other valid state.

Proof: See [Wang 82].

Theorem 3 extends the fault detectability in
{Rsisc 77] to (n'.k‘.?k'-i) shortened cyclic codes.

For a code of period T' not equal to Zk'-1. the
fault, making the entire feedback path assume an
erronecus state in realizing an LFSR encoder, may
certainly cause a noncode word at distance more
than 1 for n'=2"~1 (or at distance more than cll.iﬂ -1
for n' not equal to 2 ®.1) from the T' states.
Fortunately, since the same g(x) can be used to

realize both (n',k',T') and (n'.k'.2 -1) LFSR
encoders, and the same error detector can be
adopted to detect errors within themselves, the
fault detectability will be the same when both
criteria are implied. Moresover, since the
generstor polynomial g(x) in an LFSR encoder of an
even period of duinsztoz i3 one degree less than

that in an LFSR encoder of an odd period of
d 1n=2e.1 for t-—error-correcting, the produced

noncode word due to a fault on the feedback path
will be always at distance 2t, irrelevant of the
period being even or odd. This is summarized below:

Corollary 1: Suppose that the same generator
polynomial g(x) i3 used to implement both

(n',k',T') and (n'.k'.zk'-1) LFSR encoders for T'

not equal to 2k'-1. and both LFSR encoders use the
same error detector to detect errors within
themselves. Then the effect of the fault, which
makes the entire feedback path assume an erroneous
state in realizing an LFSR encoder of period T',
will prod a de word which (1) Jdiffers in

the first stage of the LFSR encoder from some code
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word 1in the (n.k,zk-t) eyelic ocodes, and (2) is
exactly at distance dnln" (or d -2) fro- sonc

code word, for T' odd (or even), 1n (n'.k'.z -1)
shortened cyeclic codes, respectively.

Example 3: A (6,3,4) distance-4 LFSR encoder can
use the same error detector as 8 (6,3,7) distance-3
LFSR encoder. Figure 3 shows the (6,3,7) distance-3

LFSR encoder using f(l)l((l)p(l)l(1¢l¢!3).(10! 3)

:1ox+12‘13¢x oxsoxs The code space consisting of
the 7 6-~tuple nonzero code words i3 given in Table
4, Marked by (®) are the states generated by a
(6,3,4) distance-d LFSR encoder as shown in Figure
2. If the feedback path on both (6,3,7) and
(6,3,4) LFSR encoders were stuck at one, then the
next noncode words for the same input code word
<110100>, for {nstance, would be <100101> and
<111111>, respectively. Both invalid code words are
exactly at (minimum) distance 2 from the code words
<100011> and <101110>, respectively, although they
produce up to 6 and 3 errors on the next states,
respectively. Thus, the fault can be immediately
detected by the error detector.

Table 8, Code space of a (6,3,7) distance-3 LFSR
encoder.
1 10 10 0 (™
01 10 10 (™
00 1T 1 0 1 (™
1110 0 1
1 00 0 1 1 (®
101! 1 10
01 0 t 1 1

Figure 3. A (6,3,7) distance-3 LFSR encoder.

5 CONCLUSIONS

In this paper, an encoder algorithm 1ia
presented to derive the required characteristic
polynomial and the initial contents for an LFSR
encoder design with specified minimum distance and
cycle length., It shows that in designing an LFSR

encoder with cycle length not equal to Zk-1. for k
#a integer, its initial contents have to be chosen
under certain circumstances to avoid resulting in a
shortened cycle length. Any LFSR encoder with even
cycle length always produces an even design
(minimum) distance. The fault detectability study
on the feedback path of the LFSR encoder
implementing shortened cyclic codes indicates thst
the fault, making the entire feedback path assume
an erroneous state, i3 to produce a noncode word
exactly at distance dmin" from some code word. For

any combdinstion of faults, such as stuck-st
faults, bridging faults, and external disturbances
(or noise) within the circuit, which manifest
themselves by changing at most dmin'1 positions on

the LFSR encoder output, the faults are detectable,
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